八年级平行四边形说课稿获奖
作为一名优秀的教育工作者,常常需要准备说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。快来参考说课稿是怎么写的吧!下面是小编为大家收集的八年级平行四边形说课稿获奖,希望能够帮助到大家。
八年级平行四边形说课稿获奖1一、说教材
四边形是日常生活中常见的一种图形。它与其他众多的几何图形一起构成了多姿多彩的世界。平行四边形作为最基本的几何图形,作为“空间与图形”领域中研究的主要对象,它在实际生产和生活中有着广泛的应用。
本节课的主要内容是平行四边形的概念和性质,平行四边形是一种特殊的四边形,特殊在两组对边分别平行。由于这个特殊性导致它具有一般四边形不具有的特殊性质:这些特殊的性质有助于我们解决许多实际生活中的问题,要利用这些特殊的性质的前题是判定这个四边形是个特殊的四边形,因此研究平行四边形的三个切入点是:定义、性质、判定。
1、教学目标
(一)知识与技能:
1、理解并掌握平行四边形的定义;
2、掌握平行四边形的性质定理1及性质定理2;
3、培养学生综合运用知识的能力
(二)过程与方法经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理的能力。
(三)情感态度与价值观培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际应用价值。
教学重难点
重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.
难点:运用平行四边形的性质进行有关的论证和计算
二、说教法
本节课的内容特点:教学内容来源于生活,要尽量给学生提供一定的探索空间,让学生去发现结论,由学生自己去探索、去归纳总结,此外,学生在小学阶段已对平行四边形有了初步、直观的认识,为平行四边形的研究提供了一定的认知基础,但对其本质属性理解并不深刻,在七年级的学习阶段学生已经掌握了证线段相等或角相等的一般办法,即证全等三角形。初步具有了用几何语言对命题进行推理证明的能力,这为推理平行四边形的性质奠定了基础。
根据本节课的教材内容特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的'指导思想,采用观察发现法为主,多媒体演示法为辅。教学中,设计启发性思考问题,创设问题情境,引导学生思考。教学适时运用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。具体的教学方法:观察动手实践自主探索合作交流
三、说学法
教给学生正确科学的学习方法,培养良好的学习习惯,主要指导学生的学习方法有:
1、观察猜想。以学生的观察、猜想为主,要求学生多观察,大胆猜想,主动探索来了解平行四边形的性质。
2、合作交流。采取积极引导、主动参与、互相交流来组织教学,使学生真正成为教学的主体,体会成功的喜悦。
3、总结归纳。通过例题探索、练习反馈、收获园地,引导学生总结归纳本节课学习的主要内容和解决问题的方法以及注意的问题,发挥学生的积极性和主动性,培养学生良好的学习习惯。
四、说教学过程
根据本节课的特点我采用以下教学环节来完成教学目标:
教学过程
一、共同回顾:
1.什么样的图形叫四边形?
2.四边形的内角和是多少度?外角和呢?
3.四边形的对角线有多少条?
4.小学学习过哪些特殊的四边形?
二、新课
1、平行四边形的定义:
(1)定义:两组对边分别平行的四边形叫做平行四边形。
(2)几何语言表述∵AB∥CDAD∥BC∴四边形ABCD是平行四边形
(3)定义的双重性具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”性质。
(4)平行四边形的表示:用表示,如□ABCD
(5)对边:平行四边形相对的边称为对边,相对的角称为对角.
对边:AB与CD,AD与BC.对角:∠A和∠C,∠B和∠D.
2、探究:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?
∵四边形ABCD是平行四边形
∴AB∥CD,AD∥BC,∠A+∠B=∠B+∠C=∠C+∠D=∠D+∠A=180°.
结论:平行四边形的对边平行,邻角互补
问:平行四边形的对边之间、对角之间还有什么数量关系?由此你能得到什么结论?
由∠A+∠B=∠B+∠C=∠C+∠D=∠D+∠A
你能得出平行四边形的对角之间有何关系?
性质1:平行四边形的对角相等
四边形ABCD中,∵AB∥CD,AD∥BC,∴∠A=∠C,∠B=∠D.
平行四边形的对边在位置上平行,在大小上有何关系?如何证明?
(学生猜想,讨论)
已知:如图,在四边形ABCD中,AB∥CD,AD∥BC.
求证:AB=DC,AD=BC
分析:证明边相等,常见的方法是证明两三角形全等,引导学生添加对角线辅助线
证明:连结AC
∵AB∥CD,AD∥BC
∴∠1=∠2,∠3=∠4
在△ABC和△CDA中,∠1=∠2
AC=CA
∠3=∠4
∴△ABC≌△CDA
∴AB=DC,AD=BC
性质2:平行四边形的对边相等.
强调:连接对角线是一种常见的作辅助线的方法,将四边形的问题转化为三角形解决
三、新知运用
例1.如图:在平行四边形ABCD中,根据已知的边角大小,写出其他边角的大小.
设计意图:纯平行四边形性质的简单运用
例2.已知:如图,ABCD中,BE平分∠ABC交AD于点E.
(1)如果AE=2,求CD的长.
(2)如果∠AEB=40°,求∠C的度数.
设计意图:(1)问综合运用角平分线的性质、平行线的知识、等腰三角形判定以及平行四边形的性质
(2)问综合三角形的内角和定理及平行四边形的性质
四、学生反馈练习
课件
五、课时小结
平行四边形的性质
(1)共性:具有一般四边形的性质
(2)特性:角平行四边形的对角相等,邻角互补
边平行四边形的对边相等,对边平行< ……此处隐藏8419个字……课标指出"在素质教育的大前提下,及时适量的的巩固与练习仍然是是帮助学生掌握新知提升能力的必要途径"故而,我设计了层次递进的三道巩固例题。教师引导学生审题,学生弄清题意后,师生共同解题,由教师示范解题过程,并重点强调解答中平行四边形性质的几何表述。通过运用平行四边形的性质,学会解决简单的实际问题,培养学生的应用意识。
(四)收获园地 在此,引导学生思考回答:1这节课我们一起探究了哪些问题? 2你的收获是什么?3你还想知道什么?本环节的设计意图是:旨在通过评价反思引导学生概括本节课学习的内容,对知识进行梳理,这样有利于强化学生对知识的理解和记忆,提高学生的分析和小结的能力。
(五)布置作业 在本环节,我将课后作业的布置分为两个层次,一是数学练习即课后习题作业的布置,旨在让学生通过及时地巩固练习加深对所学知识内容的理解与掌握。二是数学思考即写一篇数学日记,让学生将本堂课所获得经验体会写成一篇数学日记,同学相互交流。旨在提高学生对数学来源于生活的认识,唤醒学生亲近数学的热情,帮助学生强化数学知识的记忆,逐步拉近他们观念中数学与生活的联系,激发学生学习数学的兴趣。
下面,请看我的板书设计
六、板书设计
在此,我以直观、系统为主旨,针对本节课的具体内容,设计了重难点突出、简洁明了的课堂板书,配合多媒体的教学方式,最大化的利用教学资源的同时也体现了时代要素在教学中的运用。
七、反思评价
按照"以人为本、以学定教"的教学理念,本节课的重点是如何"引导"学生自主探索、合作交流,使学生在经历数学知识的形成与应用过程中,加深对所学知识的理解,从而突破重难点、达到教学目标。整节课还应做到全程关注每一个学生的学习状态,引导学生学会欣赏自己、欣赏同伴,彼此学习,在共同学习中掌握知识、发展能力。
在教学中应始终坚持"注重数学思想方法的教学,加强数学学习方法的指导,为学生终生学习打下坚实基础"为主旨,同时努力推行"成功教育、快乐教育"的理念,把握评价的时机与尺度,实现评价主体和形式的多样化,从而激发学生的学习兴趣,激活课堂气氛,提高课堂教学的效率与效果。促使学生主动参与并"卷入"到"做"数学的活动中,从而更加深刻的认识平行四边形的性质。
以上,我仅从说教材、说目标、说教学法、说重难点、说教学程序、说板书及反思评价几个方面上,说明了"教什么"和"怎么教",阐明了"为什么这样教"。以上是我对本节课的一些初浅的认识和想法,有不足之处,希望各位委评老师批评指导。
八年级平行四边形说课稿获奖7一、说教材
《平行四边形的认识》是人民教育出版社编写的全日制聋校实验教材数学第十册第三单元第四节平行四边形和梯形中的内容,根据聋校数学教学要求和本班学生的实际水平,我把这课分为三课时,今天要说的是第一课时的内容。
二、说目标
《数学课程标准》强调:让学生亲身经历将实物抽象成数学模型,并进行解释与应用的过程,从而使它们真正掌握数学知识与技能,理解数学思想与方法,获得广泛的数学活动经验,为此我根据本单元的教学要求和本课的特点,制定的教学目标为:
知识与技能
(1)平行四边形的概念及其特性,并会画平行四边行的高。
(2)了解平行四边形与其他图形的联系与区别。
能力目标:培养学生判断、抽象概括的能力。
情感目标:使学生感悟到人民的卓越智慧,提高审美意识。
教学重点:掌握平行四边形的意义及特征。
教学难点:
理解平行四边形与长方形、正方形的关系。
三、说教法
为突出数学教学与信息技术的`有效整合,能力培养和知识学习有机结合,我主要采用如下教学方法。
1、驱动教学法
2、指导观察法
3、多媒体辅助教学法四、说学法根据"自主发展"数学教学模式,在这部分教学中我运用了如下方法:
1、合作学习法
2、学法训练
四、说教学过程
(一)复习巩固,导入新课
用课件出示:我们已经学过一些几何图形,观察一下这些图形有什么共同特点?
在明确他们是有四条线段围成的基础上概括出:有四条线段围成的图形是四边形。
教师提问:我们学过哪些四边形呢?(正方形,长方形)
(二)提出问题,自主学习
1、理解平行四边形的意义。
首先课件出示一个平行四边形图形;
教师提问:这是什么图形?它有什么特征?
(1)今天我们就来认识平行四边形(板书:四边形、平行)
(2)课件演示平行四边形两组对边分别平行。
(3)抽象概括:根据你们看到的结果,能说说什么叫平行四边形吗?
小组先讨论,让同学们自己用尺验证,说出检验与测量的结果,从而引出平行四边形的确切定义。(板书:两组对边分别平行的四边形叫做平行四边形。)教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是"两组对边分别平行的四边形"。
2、平行四边形的特征和特性
(1)课件演示:一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉。引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?
学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角。
(2)动手操作。学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行。
(3)归纳平行四边形特性。根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性。(板书:易变形)
(4)对比三角形具有稳定性,不容易变形。平行四边形与三角形不同,容易变形,也就是具有不稳定性。这种不稳定性在实践中有广泛的应用。你能举出实际例子来吗?(如汽车间的保护网,推拉门、放缩尺等。)同学们上网站上搜索看看还有哪些实际例子。
3、学习掌握平行四形的底和高
(1)认识平行四边形的底和高
课件演示:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。这条对边叫做平行四边形的底。
教师说明:平行四边形高的画法与三角形高的画法基本相同,都用过直线外一点画已知直线的垂线的方法。从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高。这里高要画在平行四边形内,不要求把高画在底边的延长线上。
4、长方形、正方形和平行四边形的关系
(1)教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形。(还可以把平行四边形变成长方形)引导学生比较:长方形,正方形和平行四边形的异同点。
(2)这三种图形之间的关系可以用集合图来表示: 继续演示课件"平行四边形"出示集合图(三)拓展学习,寓学于乐(四)学习评价,享受成功
文档为doc格式